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Abstract: In this paper, we study the boundedness of the Marcinkiewicz operators 


  

and their commutators  


,b  on generalized Orlicz-Morrey spaces 
,M . We find 

the sufficient conditions on the pair  
21

,  which ensure the boundedness of the 

operators 


  and  


,b  from one generalized Orlicz-Morrey space 1,
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another 2,
M  . 
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1. Introduction and notations 

 

 Morrey spaces and their properties play an important role in the study of 

local behavior of solutions to elliptic partial differential equations, refer to [18,23]. 

The authors of [1,2] showed the boundedness in Morrey spaces for some important 

operators in harmonic analysis such as Hardy-Littlewood operators, Calderon-

Zygmund singular integral operators and fractional integral operators. A natural 

step in the theory of functions spaces was to study Orlicz-Morrey spaces where the 

“Morrey-type measuring” of regularity of functions is realized with respect to the 

Orlicz norm over balls instead of the Lebesgue one. Such spaces were first 

introduced and studied by Nakai [20]. Then another kind of generalized Orlicz-

Morrey spaces were introduced by Sawano et al. [25]. Generalized Orlicz-Morrey 

spaces as the one introduced by Guliyev et al. [4], see also [8,10,11,13]. 

Let 
1nS  be the unit sphere in  2, nR n

 equipped with normalized 

Lebesgue measure dσ and    ryxRyrxB n  :,  be the open ball 

centered at x  and radius r . Suppose  1 nq SL  with  q1  is 

homogeneous of degree zero and satisfies the cancelation condition 
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   



1

0
nS

xdx  , 

where xxx /  for any 0x . Marcinkiewicz operator 


  is defined by 

   
2

1

0

3

2

, 












 




t

dt
xFxf t , 

where 

 
 

 
 
 






txB

nt
dyyf

yx

yx
xF

,

1,
. 

 

Let b  be a locally integrable function on 
nR , the commutator of b  and 


  

is defined as follows 

 

     
2

1

0

3

2

,
, 








 




t

dt
xFxfb b

t
 , 

where 

 
 

      
 
 








txB

n

b

t
dyyfybxb

yx

yx
xF

,

1,
. 

 

It is well known that Marcinkiewicz operator plays an important role in harmonic 

analysis. Benedek et al. [3] proved that if  11  nSC , then 


  is bounded on 

 np RL  for  p1 . The corresponding commutator  


,b  was first 

considered by Torchinsky and Wang in [26]. In 2002, Ding et al. [5] showed that if 

  1,1   qSL nq
, then 


  is bounded on  np RL  for  p1 .  

In this paper, we consider the case when   is dependents also on x . It is 

given a function     ,0,0: nR  as well as the Young function 

    ,0,0: . Denote by G  the set of all functions 

    ,0,0: nR  such that    sxtx ,,    for all 0 st  and that 

    11 ,
 ttxt n   is almost decreasing, that is, there exists a constant 

0C  independent of x  such that         1111 ,,
  ssxCttx nn   
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for all  ts0 . Here   1
 is the inverse of   . Denote by 

2
  the set 

of all convex bijections     ,0,0:  such that the doubling condition:  

       02  ttCt                                             (1)  

holds for some constant 2C , which is called doubling constant, and by 
2

  the 

set of all convex functions     ,0,0:  such that the 
2

 -condition:  

     022  tttC                                            (2)  

holds for some 1C . Note that C  in  1  exceeds 2  when 
22

  due 

to (2). Recall also that the conjugate function   of   is defined by:  

      00:sup  tssstt . 

Let   be a Young function. Recall that the Orlicz norm 
 EL

f   over a 

measurable set E  in 
nR  is defined by: 

 

 

 



























  1:0inf dx

xf
f

E
EL 

 . 

Define  n

loc
RL

 as the set of all measurable functions f  for which  KLf   

for all compact sets K  in 
nR . 

We now define generalized Orlicz-Morrey spaces of the third kind. The 

generalized Orlicz-Morrey space  nRM ,
 of the third kind is defined as the set 

of all measurable functions f for which the norm 

 

      rxBL
rRx

M
f

rxBtx
f

n
,

1

0, ,

1

,

1
sup,  













 

 
  

is finite. 

 

Note that  nRM ,
 covers many classical function spaces. 

 

Example 1.1. Let  pq1  and 
22

 . From the following special 

cases, we see that our results will cover the Lebesgue space  np RL , the classical 

Morrey space  np

q
RM , the generalized Morrey space  np RM ,

 and the Orlicz 

space  nRL
 with norm coincidence:  
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1. If   ptt   and   p

n

tt


 , then    npn RLRM  ,
 with 

equivalent norms.  

2. If   qtt   and   p

n

tt


 , then  nRM ,
, which is denoted by 

 np

q
RM , is the classical Morrey space.  

3. If   ptt  , then    npn RMRM  ,, 
 is the generalized Morrey 

space which were discussed in [7,9,12,15,17,19].  

4. If    ntt  1 , then    nn RLRM  ,
, which is beyond the 

reach of generalized Orlicz-Morrey spaces of the second kind defined in [25] 

according to an example constructed in [6]. 

Other definitions of generalized Orlicz-Morrey spaces can be found in 

[20,21,22,25]; Therefore, our definition of generalized Orlicz-Morrey spaces here 

is named “third kind”.  

Therefore, the purpose of this paper is mainly to study the boundedness of 

Marcinkiewicz operator and its commutators in generalized Orlicz-Morrey spaces 

of the third kind.  

By A ≲ B we mean that A ≤ CB with some positive constant C 

independent of appropriate quantities. If A ≲ B and B ≲ A, we write A ≈ B and say 

that A and B are equivalent. 

 

2 Marcinkiewicz integral in generalized Orlicz-Morrey spaces 

 

In this section, we study the boundedness of integral operators in generalized 

Orlicz-Morrey spaces.  

The following result concerning the boundedness of Marcinkiewicz integral 

operator 


  on 
pL  is known. 

Theorem 2.1. [27] Suppose that  qp,1  and  1 nq SL . Then, there is 

a constant C  independent of f  such that  

     npnP RLRL
fCf 


 . 

The following interpolation result is from [14].  

Lemma 2.1. Let T  be a sublinear operator of weak type  pp,  for any 

  ,1p . Then T  is bounded on  nRL
, where   is a Young function 

satisfying 
22

 .  

As a consequence of Lemma 2.1 and Theorem 2.1, we get the following 

result. 
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Corollary 2.1. Let   be a Young function and  1 nSL . If 

22
 , then 


  is bounded on  nRL

. 

We will use the following statement on the boundedness of the weighted 

Hardy operator 

       


 
r

w
rdsswsgrgH ,0,: , 

where w  is a weight.  

The following theorem was proved in [8]. 

 

Theorem 2.2. Let 
21

,vv  and w  be weights on  ,0  and  rv
1

 be bounded 

outside a neighborhood of the origin. The inequality 

       rgrvCrgHrv
r

w
r

1
0

2
0

supsup






                                (3) 

holds for some 0C  for all non-negative and non-decreasing g  on  ,0  if 

and only if 

 
 

 
 





 r
st

r sv

dttw
rvB

1

2
0 sup

sup: . 

Moreover, the value BC   is the best constant for (3). 

We also use the following lemma to prove our main estimates. 

Lemma 2.2. For a Young function   and all balls B , the following inequality is 

valid 

 
 

 
.2

11
1 BLBL

fBBf 

  

Proof. The following analogue of the Holder inequality is known. 

     LL

R

gfdxxgxf
n

2 .                                    (4) 

For the proof of (4), see, for example [24].  

The proof follows from Holder’s inequality and the well known facts 

    ,0,2
~ 11   rrrrr                                      (5) 

where  r
~

 is defined by 

 
      










.,

,0,,0:sup~

r

rssrs
r  
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and  
 11

1




B
LB

  . 

 Therefore, we have the following theorem 

Theorem 2.3. Let   any Young function, 
21

,  and   satisfy the condition  

 

  
    rxC

t

dt
sxB

sxB

sx
ess

r st

,,
,

,
inf

2

11

11

1 


























 , 

where C  does not depend on x  and r . Let also  1 nSL . If   satisfy the 

condition 
22

 , then the operator 


  is bounded from  nRM 1,
 to 

 nRM 2,
. 

Proof. For any ball  rxBB ,
0

 , function  xf  can be divided into two parts: 

212\2
: fffff

BRB n   , thus we have  

      2121
IIfff

BLBLBL
  

 . 

For 
1

I , by  nRL
 boundedness of 


  (see Corollary 2.1), we have  

   BLRL
ffCI n 211   . 

From (5) we get 

       
 





 
r r

n

n

t

dt
txBC

t

dt
rBB

2 2

1

0

1

1

1111 ,  

and then  

      
  

t

dt
txBf

B
CfCI

r
txBLBL 








 

2

1

0

1

,1121
,

1

0

.  (6) 

For 
2

I , we first estimate  xf
2

  for any Bx , since BRy n 2\ , 

we have the following inequality: yxyxyx 
00

2

3

2

1
, therefore we 

obtain 

 
 

   

 
 





















 






n n

n

R BR

nSL
yx

n
dy

yx

yf
Cdy

t

dt
yf

yx

yx
xf

2\ 0

2

1

3212 1

. 

By Fubini’s theorem we have 
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 

 

 
 









 yx

n

BB

n
dy

t

dt
dyyfdy

yx

yf

CC
0

1

22 0

 

   
 

   









r tyxr r txB

nn t

dt
dyyfC

t

dt
dyyf

2 2 2 ,

11

0 0

. 

By Lemma 2.2, we get 

 

 

 
  

  







r
txBL

B

n t

dt
txBfCdy

yx

yf

C 2

1

0

1

,

2 0

,
0

.              (7) 

Moreover 

 

 
      

  










 

r
txBLBL t

dt
txBf

B

C
f

2

1

0

1

,11
2

,
0

  

is valid. Thus 

 
        

  










 

r
txBLBLBL t

dt
txBf

B

C
fCf

2

1

0

1

,112
,

0

  

and from (6) we have  

 
      

  










 

r
txBLBL t

dt
txBf

B

C
f

2

1

0

1

,11
,

0

 .               (8) 

By inequality (8) and Theorem 2.2 we have 

 

        
  





  

r
txBL

rRx
RM t

dt
ftxBrxCf

n

n ,

1

0

11

02
0,

0

0

2, ,,sup  

 

    
  rxBL

rRx

frxBrxC
n

,

1

0

11

01
0,

0

0

,,sup 





 
  rxBL

f
,0

 . 

Corollary 2.2. Let  1 nSL ,   be a Young function, 


G
1

 , and 

 
21

,  satisfy the condition  

   



r

rxC
t

dt
tx ,,

21
 , 

where C  does not depend on x  and r . If   satisfy the condition 
22



, then the operator 


  is bounded from  nRM 1,
 to  nRM 2,

. 
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3 Commutators of Marcinkiewicz integral in generalized Orlicz-Morrey 

spaces 

 

In this section, we consider the commutators generalized by the singular 

integral operator, Marcinkiewicz operator and  nRBMO  function. A local 

integrable function  nloc RLf  , if it satisfies 

 
   

 
 




rxB

rxB
rRx

dybyb
rxB

b
n

,

,
0, ,

1
sup , 

where  rxB ,  is ball centered at x  and radius of r  and 

   
 

 


rxB

rxB
dyyb

rxB
b

,

,
,

1
, then b  belongs to  nRBMO , and 


  is the 

norm in  nRBMO . The following estimate is very convenient in applications. 

Lemma 3.1. [16] Let  nRBMOb . Suppose  p1 , 
nRx  and 

02  rR , there exist constant 0C , such that 

    
 b

r

R
Cbb

rxBRxB
ln

,,
. 

Before proving our theorems, we need the following lemma.  

Lemma 3.2. [10] Let  nRBMOb  and   be a Young function with 
2

 , 

then  

         rxBLrxB
rRx

bbrxBb
n ,,

11

0,

,sup








. 

We will use the following statements on the boundedness of the weighted 

Hardy operator 

       


 









r

w
rdsswsg

t

s
rg ,0,ln1: , 

where w  is a weight.  

The following theorem is valid. 

Theorem 3.1. Let 
21

, vv  and w  be weights on  ,0  and  tv
1

 be bounded 

outside a neighborhood of the origin. The inequality 

       rgrvCrgrv
r

w
r

1
0

2
0

supsup






                                (9) 

holds for some 0C  for all non-negative and non-decreasing g  on  ,0  if 

and only if 
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 
 

 
















r
st

r sv

dttw

t

s
rvB

1

2
0 sup

ln1sup: . 

Moreover, the value BC   is the best constant for (3.1). 

Note that, Lemma 3.2 is proved analogously to [[8], Theorem 3.1].  

The following result concerning the boundedness of commutators of 

Marcinkiewicz integral operator  


,b  on 
pL  is known. 

Theorem 3.2. [27] Suppose that  qp,1 ,  nRBMOb  and 

 1 nq SL . Then, there is a constant C  independent of f  such that  

      npnp RLRL
fCfb 


, . 

As a consequence of Lemma 2.1 and Theorem 3.2, we get the following 

result.  

Corollary 3.1. Let   be a Young function,  nRBMOb  and  1 nSL . 

If 
22

 , then  


,b  is bounded on  nRL
.  

Therefore, we get the following theorem  

Theorem 3.3. Let  1 nSL ,  nRBMOb ,   any Young function, 

21
,  and   satisfy the condition  

 

  
    rxC

t

dt
sxB

sxB

sx
ess

r

t

r st

,,
,

,
infln1

2

11

11

1 



































 , 

where C  does not depend on x  and r . If   satisfy the condition 
22



, then the operator  


,b  is bounded from  nRM 1,
 to  nRM 2,

. 

Proof. For any ball  rxBB ,
0

 , function  xf  can be divided into two parts: 

212\2
: fffff

BRB n   , thus, we have  

 
 

 
 

 
  2121

,,, JJfbfbfb
BLBLBL

  
 . 

For 
1

J , by  nRL
 boundedness of  


,b  (see Corollary 3.1), from (6) 

we have  

 

        
  

t

dt
txBf

B
CffCJ

r
txBLBLRL n 








 

2

1

0

1

,11211
,

1

0

. 
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For 
2

J , observe that for any Bx , since BRy n 2\ , it has the 

following inequality: yxyxyx 
00

2

3

2

1
, therefore we obtain 

   
 

       

























BR yx

n
n

dy
t

dt
yfybxb

yx

yx
Cxfb

2\

2

1

312
,  

       
 

      





BR

n
n

dyyfybxb
yx

yx
C

2\

 

         

   
 




 

BR

nSL
n

n dyyf
yx

ybxb
C

2\ 0

1 . 

Then 

 
 

   
 

 BL
BR

nBL
n

dyyf
yx

byb
Cfb



 







2\ 0

2
,  

 
 

 

 
 

 BL
BR

n

B

BL
BR

n

B

nn

dyyf
yx

bb
dyyf

yx

byb
C














2\ 02\ 0

 

 

2221
JJ  . 

For 
1

J  we have 

 

 
 

 








BR

n

B

n

dyyf
yx

byb

B
J

2\ 0

1121

1
 

 
    











BR yx

nB
n

dy
t

dt
yfbyb

B 2\

111
0

1
 

 
    











r tyxr

nB
t

dt
dyyfbyb

B 2 2

111
0

1
 

 
   

 
 








r txB

nB
t

dt
dyyfbyb

B 2 ,

111
0

1
. 

Hence 
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 
     

 
 








r txB

ntxB
t

dt
dyyfbyb

B
CJ

2 ,

1,11
21

0

0

1
 

       
 

 








r txB

ntxBrxB
t

dt
dyyfbb

B 2 ,

1,,11
0

00

1
. 

Applying Holder’s inequality, by (5) and Lemmas 2.2, 3.1 and 3.2 we get 

 
         










r

ntxBLtxBL
txB

t

dt
fbb

B
CJ

2

1,,
,1121

00

~
0

1
 

  
        

  








 

r
txBLtxBrxB

t

dt
txBfbb

B 2

1

0

1

,,,11
,

1

000
 

    
  






 










 

r
txBL t

dt
txBf

t

s

B

b
C

2

1

0

1

,11
,ln1

0

. 

For 
22

J  we obtain 

 
 

 



 

BR

nBLB
n

dy
yx

yf
bbJ

2\ 0

22
. 

By Lemma 3.2 and the inequality (7), we get 

 

 
 









BR

n
n

dy
yx

yf

B

b
CJ

2\ 0

1122
 

    
  






 


 

r
txBL t

dt
txBf

B

b
C

2

1

0

1

,11
,

0

. 

Combining the estimates for 
21

J  and 
22

J  we have 

 
      

  
t

dt
txBf

t

s

B

b
Cfb

r
txBLBL 





















 

2

1

0

1

,112
,ln1,

0

 .  

(10) 

Again combining the estimates for  
1

, fb


  and  
2

, fb


  we have 

 
      

  
t

dt
txBf

t

s

B

b
Cfb

r
txBLBL 





















 

2

1

0

1

,11
,ln1,

0



 

By inequality (10) and Theorem 2.2 we have 
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         
   t

dt
ftxBrxCfb

r
txBL

rRx
RM

n
n 





  

,

1

0

11

02
0,

0

0

2, ,,sup,  

 

    
    n

n
RMtxBL

rRx

fftxBrxC
1,

0

0

,

1

0

11

01
0,

,,sup   




. 

Corollary 3.2. Let  1 nSL ,  nRBMOb ,   any Young function, 


G

1
  and  

21
,  satisfy the condition  

   rxC
t

dt
tx

r

t

r

,,ln1
21

 











, 

where C  does not depend on x  and r . If   satisfy the condition 
22



, then the operator  


,b  is bounded from  nRM 1,
 to  nRM 2,

. 
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