MARCINKIEWICZ INTEGRAL AND ITS COMMUTATORS ON GENERALIZED ORLICZ-MORREY SPACES OF THE THIRD KIND

S.G. Hasanov ${ }^{1}$, Nazlipinar Ali Serdar ${ }^{2}$
${ }^{1}$ Gandja State University, Gandja, Azerbaijan
${ }^{2}$ Department of Mathematics, Dumlupinar University, Kutahya, Turkey
e-mail: sabhasanov@gmail.com, ali.nazlipinar@dpu.edu.tr

Abstract

In this paper, we study the boundedness of the Marcinkiewicz operators μ_{Ω} and their commutators $\left[b, \mu_{\Omega}\right]$ on generalized Orlicz-Morrey spaces $M^{\Phi, \varphi}$. We find the sufficient conditions on the pair $\left(\varphi_{1}, \varphi_{2}\right)$ which ensure the boundedness of the operators μ_{Ω} and $\left[b, \mu_{\Omega}\right]$ from one generalized Orlicz-Morrey space $M^{\Phi, \varphi_{1}}$ to another $M^{\Phi, \varphi_{2}}$.

Keywords: Generalized Orlicz-Morrey spaces, Marcinkiewicz integral, Commutator, BMO, Hardy operator.
AMS Subject Classification: 42B20, 42B25, 42B35.

1. Introduction and notations

Morrey spaces and their properties play an important role in the study of local behavior of solutions to elliptic partial differential equations, refer to [18,23]. The authors of [1,2] showed the boundedness in Morrey spaces for some important operators in harmonic analysis such as Hardy-Littlewood operators, CalderonZygmund singular integral operators and fractional integral operators. A natural step in the theory of functions spaces was to study Orlicz-Morrey spaces where the "Morrey-type measuring" of regularity of functions is realized with respect to the Orlicz norm over balls instead of the Lebesgue one. Such spaces were first introduced and studied by Nakai [20]. Then another kind of generalized OrliczMorrey spaces were introduced by Sawano et al. [25]. Generalized Orlicz-Morrey spaces as the one introduced by Guliyev et al. [4], see also [8,10,11,13].

Let S^{n-1} be the unit sphere in $R^{n},(n \geq 2)$ equipped with normalized Lebesgue measure do and $B(x, r)=\left\{y \in R^{n}:|x-y|<r\right\}$ be the open ball centered at x and radius r. Suppose $\Omega \in L^{q}\left(S^{n-1}\right)$ with $1<q \leq \infty$ is homogeneous of degree zero and satisfies the cancelation condition

$$
\int_{s^{n-1}} \Omega\left(x^{\prime}\right) d \sigma\left(x^{\prime}\right)=0
$$

where $x^{\prime}=x /|x|$ for any $x \neq 0$. Marcinkiewicz operator μ_{Ω} is defined by

$$
\mu_{\Omega} f(x)=\left(\int_{0}^{\infty}\left|F_{\Omega, t}(x)\right|^{2} \frac{d t}{t^{3}}\right)^{\frac{1}{2}},
$$

where

$$
F_{\Omega, t}(x)=\int_{B(x, t)} \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) d y
$$

Let b be a locally integrable function on R^{n}, the commutator of b and μ_{Ω} is defined as follows

$$
\left[b, \mu_{\Omega}\right] f(x)=\left(\int_{0}^{\infty}\left|F_{\Omega, t}^{b}(x)\right|^{2} \frac{d t}{t^{3}}\right)^{\frac{1}{2}}
$$

where

$$
F_{\Omega, t}^{b}(x)=\int_{B(x, t)} \frac{\Omega(x-y)}{|x-y|^{n-1}}[b(x)-b(y)] f(y) d y
$$

It is well known that Marcinkiewicz operator plays an important role in harmonic analysis. Benedek et al. [3] proved that if $\Omega \in C^{1}\left(S^{n-1}\right)$, then μ_{Ω} is bounded on $L^{p}\left(R^{n}\right)$ for $1<p<\infty$. The corresponding commutator $\left[b, \mu_{\Omega}\right]$ was first considered by Torchinsky and Wang in [26]. In 2002, Ding et al. [5] showed that if $\Omega \in L^{q}\left(S^{n-1}\right), q>1$, then μ_{Ω} is bounded on $L^{p}\left(R^{n}\right)$ for $1<p<\infty$.

In this paper, we consider the case when ϕ is dependents also on x. It is given a function $\phi: R^{n} \times(0, \infty) \rightarrow(0, \infty)$ as well as the Young function $\Phi:[0, \infty) \rightarrow[0, \infty)$. Denote by G_{ϕ} the set of all functions $\phi: R^{n} \times(0, \infty) \rightarrow(0, \infty)$ such that $\phi(x, t) \leq \phi(x, s)$ for all $t>s>0$ and that $t \mapsto \Phi^{-1}\left(x, t^{-n}\right) \phi(t)^{-1}$ is almost decreasing, that is, there exists a constant $C>0$ independent of x such that $\Phi^{-1}\left(x, t^{-n}\right) \phi(t)^{-1} \leq C \Phi^{-1}\left(x, s^{-n}\right) \phi(s)^{-1}$
for all $0<s<t<\infty$. Here $\Phi^{-1}(\cdot)$ is the inverse of $\Phi(\cdot)$. Denote by Δ_{2} the set of all convex bijections $\Phi:[0, \infty) \rightarrow[0, \infty)$ such that the doubling condition:

$$
\begin{equation*}
\Phi(2 t) \leq C \Phi(t) \quad(t \geq 0) \tag{1}
\end{equation*}
$$

holds for some constant $C \geq 2$, which is called doubling constant, and by ∇_{2} the set of all convex functions $\Phi:[0, \infty) \rightarrow[0, \infty)$ such that the ∇_{2}-condition:

$$
\begin{equation*}
2 C^{\prime} \Phi(t) \leq \Phi(2 t) \quad(t \geq 0) \tag{2}
\end{equation*}
$$

holds for some $C^{\prime}>1$. Note that C in (1) exceeds 2 when $\Phi \in \Delta_{2} \cap \nabla_{2}$ due to (2). Recall also that the conjugate function Ψ of Φ is defined by:

$$
\Psi(t) \equiv \sup \{s t-\Phi(s): s \geq 0\} \quad(t \geq 0)
$$

Let Φ be a Young function. Recall that the Orlicz norm $\|f\|_{L^{\oplus}(E)}$ over a measurable set E in R^{n} is defined by:

$$
\|f\|_{L^{\triangleright}(E)} \equiv \inf \left\{\lambda>0: \int_{E}\left(\frac{|f(x)|}{\lambda}\right) d x \leq 1\right\} .
$$

Define $L_{\text {loc }}^{\Phi}\left(R^{n}\right)$ as the set of all measurable functions f for which $f \in L^{\Phi}(K)$ for all compact sets K in R^{n}.

We now define generalized Orlicz-Morrey spaces of the third kind. The generalized Orlicz-Morrey space $M^{\Phi, \phi}\left(R^{n}\right)$ of the third kind is defined as the set of all measurable functions f for which the norm

$$
\|f\|_{M^{0 ., p}} \equiv \sup _{x \in R^{n}, r>0} \frac{1}{\phi(x, t)} \Phi^{-1}\left(\frac{1}{|B(x, r)|}\right)\|f\|_{L^{\Phi}(B(x, r))}
$$

is finite.
Note that $M^{\Phi, \phi}\left(R^{n}\right)$ covers many classical function spaces.
Example 1.1. Let $1 \leq q \leq p<\infty$ and $\Phi \in \Delta_{2} \cap \nabla_{2}$. From the following special cases, we see that our results will cover the Lebesgue space $L^{p}\left(R^{n}\right)$, the classical Morrey space $M_{q}^{p}\left(R^{n}\right)$, the generalized Morrey space $M^{\Phi, p}\left(R^{n}\right)$ and the Orlicz space $L^{\oplus}\left(R^{n}\right)$ with norm coincidence:

1. If $\Phi(t)=t^{p}$ and $\phi(t)=t^{-\frac{n}{p}}$, then $M^{\Phi, \phi}\left(R^{n}\right)=L^{p}\left(R^{n}\right)$ with equivalent norms.
2. If $\Phi(t)=t^{q}$ and $\phi(t)=t^{-\frac{n}{p}}$, then $M^{\Phi, \phi}\left(R^{n}\right)$, which is denoted by $M_{q}^{p}\left(R^{n}\right)$, is the classical Morrey space.
3. If $\Phi(t)=t^{p}$, then $M^{\Phi, \phi}\left(R^{n}\right)=M^{p, \phi}\left(R^{n}\right)$ is the generalized Morrey space which were discussed in $[7,9,12,15,17,19]$.
4. If $\phi(t)=\Phi^{-1}\left(t^{-n}\right)$, then $M^{\Phi, \phi}\left(R^{n}\right)=L^{\Phi}\left(R^{n}\right)$, which is beyond the reach of generalized Orlicz-Morrey spaces of the second kind defined in [25] according to an example constructed in [6].

Other definitions of generalized Orlicz-Morrey spaces can be found in [20,21,22,25]; Therefore, our definition of generalized Orlicz-Morrey spaces here is named "third kind".

Therefore, the purpose of this paper is mainly to study the boundedness of Marcinkiewicz operator and its commutators in generalized Orlicz-Morrey spaces of the third kind.

By $\mathrm{A} \lesssim \mathrm{B}$ we mean that $\mathrm{A} \leq \mathrm{CB}$ with some positive constant C independent of appropriate quantities. If $A \lesssim B$ and $B \lesssim A$, we write $A \approx B$ and say that A and B are equivalent.

2 Marcinkiewicz integral in generalized Orlicz-Morrey spaces

In this section, we study the boundedness of integral operators in generalized Orlicz-Morrey spaces.

The following result concerning the boundedness of Marcinkiewicz integral operator μ_{Ω} on L^{p} is known.
Theorem 2.1. [27] Suppose that $1<p, q<\infty$ and $\Omega \in L^{q}\left(S^{n-1}\right)$. Then, there is a constant C independent of f such that

$$
\left\|\mu_{\Omega}(f)\right\|_{L^{p}\left(R^{n}\right)} \leq C\|f\|_{L^{p}\left(R^{n}\right)}
$$

The following interpolation result is from [14].
Lemma 2.1. Let T be a sublinear operator of weak type (p, p) for any $p \in(1, \infty)$. Then T is bounded on $L^{\Phi}\left(R^{n}\right)$, where Φ is a Young function satisfying $\Phi \in \Delta_{2} \cap \nabla_{2}$.

As a consequence of Lemma 2.1 and Theorem 2.1, we get the following result.

Corollary 2.1. Let Φ be a Young function and $\Omega \in L^{\infty}\left(S^{n-1}\right)$. If $\Phi \in \Delta_{2} \cap \nabla_{2}$, then μ_{Ω} is bounded on $L^{\Phi}\left(R^{n}\right)$.

We will use the following statement on the boundedness of the weighted Hardy operator

$$
H_{w}^{*} g(r):=\int_{r}^{\infty} g(s) w(s) d s, \quad r \in(0, \infty)
$$

where w is a weight.
The following theorem was proved in [8].
Theorem 2.2. Let v_{1}, v_{2} and w be weights on $(0, \infty)$ and $v_{1}(r)$ be bounded outside a neighborhood of the origin. The inequality

$$
\begin{equation*}
\sup _{r>0}(r) H_{w}^{*} g(r) \leq C \sup _{r>0}(r) g(r) \tag{3}
\end{equation*}
$$

holds for some $C>0$ for all non-negative and non-decreasing g on $(0, \infty)$ if and only if

$$
B:=\sup _{r>0}(r) \int_{r}^{\infty} \frac{w(t) d t}{\sup _{t<s<\infty} v_{1}(s)}<\infty
$$

Moreover, the value $C=B$ is the best constant for (3).
We also use the following lemma to prove our main estimates.
Lemma 2.2. For a Young function Φ and all balls B, the following inequality is valid

$$
\|f\|_{L^{1}(B)} \leq 2|B| \Phi^{-1}\left(|B|^{-1}\right) \mid f \|_{L^{\Phi}(B)}
$$

Proof. The following analogue of the Holder inequality is known.

$$
\begin{equation*}
\left|\int_{R^{n}} f(x) g(x) d x\right| \leq 2\|f\|_{L^{\Phi}}\|g\|_{L^{ \pm}} \tag{4}
\end{equation*}
$$

For the proof of (4), see, for example [24].
The proof follows from Holder's inequality and the well known facts

$$
\begin{equation*}
r \leq \Phi^{-1}(r) \widetilde{\Phi}^{-1}(r) \leq 2 r, \quad r>0 \tag{5}
\end{equation*}
$$

where $\tilde{\Phi}(r)$ is defined by

$$
\tilde{\Phi}(r)=\left\{\begin{array}{cl}
\sup \{r s-\Phi(s): s \in[0, \infty)\}, & r \in[0, \infty) \\
\infty, & r=\infty
\end{array}\right.
$$

and $\left\|\chi_{B}\right\|_{L^{\Phi}}=\frac{1}{\Phi^{-1}\left(|B|^{-1}\right)}$.
Therefore, we have the following theorem
Theorem 2.3. Let Φ any Young function, φ_{1}, φ_{2} and Φ satisfy the condition

$$
\int_{r}^{\infty}\left(\underset{t<s<\infty}{\operatorname{essinf}} \frac{\varphi_{1}(x, s)}{\Phi^{-1}\left(|B(x, s)|^{-1}\right)}\right) \Phi^{-1}\left(|B(x, s)|^{-1}\right) \frac{d t}{t} \leq C \varphi_{2}(x, r)
$$

where C does not depend on x and r. Let also $\Omega \in L^{\infty}\left(S^{n-1}\right)$. If Φ satisfy the condition $\Phi \in \Delta_{2} \cap \nabla_{2}$, then the operator μ_{Ω} is bounded from $M^{\Phi, \varphi_{1}}\left(R^{n}\right)$ to $M^{\Phi, \varphi_{2}}\left(R^{n}\right)$.
Proof. For any ball $B=B\left(x_{0}, r\right)$, function $f(x)$ can be divided into two parts: $f=f \chi_{2 B}+f \chi_{R^{n} \mid 2 B}:=f_{1}+f_{2}$, thus we have

$$
\left\|\mu_{\Omega} f\right\|_{L^{\Phi}(B)} \leq\left\|\mu_{\Omega} f_{1}\right\|_{L^{\Phi}(B)}+\left\|\mu_{\Omega} f_{2}\right\|_{L^{\Phi}(B)} \equiv I_{1}+I_{2}
$$

For I_{1}, by $L^{\Phi}\left(R^{n}\right)$ boundedness of μ_{Ω} (see Corollary 2.1), we have

$$
I_{1} \leq C\left\|f_{1}\right\|_{L^{\Phi}\left(R^{n}\right)}=\|f\|_{L^{\Phi}(2 B)^{\top}}
$$

From (5) we get

$$
\Phi^{-1}\left(|B|^{-1}\right) \approx \Phi^{-1}\left(|B|^{-1}\right) r^{n} \int_{2 r}^{\infty} \frac{d t}{t^{n+1}} \leq C \int_{2 r}^{\infty} \Phi^{-1}\left(\left|B\left(x_{0}, t\right)\right|^{-1}\right) \frac{d t}{t}
$$

and then

$$
\begin{equation*}
I_{1} \leq C\|f\|_{L^{\Phi}(2 B)} \leq C \frac{1}{\Phi^{-1}\left(|B|^{-1}\right)} \int_{2 r}^{\infty}\|f\|_{L^{\Phi}\left(B\left(x_{0}, t\right)\right)} \Phi^{-1}\left(\left|B\left(x_{0}, t\right)\right|^{-1}\right) \frac{d t}{t} \tag{6}
\end{equation*}
$$

For I_{2}, we first estimate $\mu_{\Omega} f_{2}(x)$ for any $x \in B$, since $y \in R^{n} \backslash 2 B$, we have the following inequality: $\frac{1}{2}\left|x_{0}-y\right| \leq|x-y| \leq \frac{3}{2}\left|x_{0}-y\right|$, therefore we obtain

$$
\left|\mu_{\Omega} f_{2}(x)\right| \leq \int_{R^{n}} \frac{|\Omega(x-y)|}{|x-y|^{n-1}}\left|f_{2}(y)\right|\left(\int_{|x-y|}^{\infty} \frac{d t}{t^{3}}\right)^{\frac{1}{2}} d y \leq C|\Omega|_{L^{\infty}\left(S^{n-1}\right)} \int_{R^{n} \backslash 2 B} \frac{|f(y)|}{\left|x_{0}-y\right|^{n}} d y
$$

By Fubini's theorem we have

$$
\begin{aligned}
& \int_{c(2 B)} \frac{|f(y)|}{\left|x_{0}-y\right|^{n}} d y \approx \int_{c(2 B)}|f(y)| d y \int_{\left|x_{0}-y\right|}^{\infty} \frac{d t}{t^{n+1}} d y \\
&=\int_{2 r 2 r \leq\left|x_{0}-y\right|<t}^{\infty} \int_{\mid y}|f(y)| d y \frac{d t}{t^{n+1}} \leq C \int_{2 r B\left(x_{0}, t\right)}^{\infty}|f(y)| d y \frac{d t}{t^{n+1}} .
\end{aligned}
$$

By Lemma 2.2, we get

$$
\begin{equation*}
\int_{(2 B)} \frac{|f(y)|}{\left|x_{0}-y\right|^{n}} d y \leq C \int_{2 r}^{\infty}\|f\|_{L^{\oplus}\left(B\left(x_{0}, t\right)\right)} \Phi^{-1}\left(\left.B\left(x_{0}, t\right)\right|^{-1}\right) \frac{d t}{t} . \tag{7}
\end{equation*}
$$

Moreover

$$
\left\|\mu_{\Omega}\left(f_{2}\right)\right\|_{L^{\circ}(B)} \leq \frac{C}{\Phi^{-1}\left(|B|^{-1}\right)} \int_{2 r}^{\infty}\|f\|_{L^{\infty}\left(B\left(x_{0}, t\right)\right)} \Phi^{-1}\left(\left|B\left(x_{0}, t\right)\right|^{-1}\right) \frac{d t}{t}
$$

is valid. Thus
and from (6) we have

$$
\begin{equation*}
\left\|\mu_{\Omega}(f)\right\|_{L^{\oplus}(B)} \leq \frac{C}{\Phi^{-1}\left(|B|^{-1}\right)_{2 r}^{\infty} \int_{2 r}^{\infty}\|f\|_{L^{\Phi}\left(B\left(x_{0}, t\right)\right)} \Phi^{-1}\left(\left|B\left(x_{0}, t\right)\right|^{-1}\right) \frac{d t}{t} . . . ~ . ~} \tag{8}
\end{equation*}
$$

By inequality (8) and Theorem 2.2 we have

$$
\begin{aligned}
& \left\|\mu_{\Omega}(f)\right\|_{M^{\Phi}, \varphi_{2}\left(R^{n}\right)} \leq C \sup _{x_{0} \in R^{n}, r>0} \varphi_{2}\left(x_{0}, r\right)^{-1} \int_{r}^{\infty} \Phi^{-1}\left(\left|B\left(x_{0}, t\right)\right|^{-1}\right)\|f\|_{L^{\oplus}\left(B\left(x_{0}, t\right)\right)} \frac{d t}{t} \\
& \quad \leq C \sup _{x_{0} \in R^{n}, r>0} \varphi_{1}\left(x_{0}, r\right)^{-1} \Phi^{-1}\left(\mid B\left(x_{0}, r\right)^{-1}\right)\|f\|_{L^{\oplus}\left(B\left(x_{0}, r\right)\right)}=\|f\|_{L^{\oplus}\left(B\left(x_{0}, r\right)\right)} .
\end{aligned}
$$

Corollary 2.2. Let $\Omega \in L^{\infty}\left(S^{n-1}\right)$, Φ be a Young function, $\varphi_{1} \in G_{\Phi}$, and $\left(\varphi_{1}, \varphi_{2}\right)$ satisfy the condition

$$
\int_{r}^{\infty} \varphi_{1}(x, t) \frac{d t}{t} \leq C \varphi_{2}(x, r),
$$

where C does not depend on x and r. If Φ satisfy the condition $\Phi \in \Delta_{2} \cap \nabla_{2}$, then the operator μ_{Ω} is bounded from $M^{\Phi, \varphi_{1}}\left(R^{n}\right)$ to $M^{\Phi, \varphi_{2}}\left(R^{n}\right)$.

3 Commutators of Marcinkiewicz integral in generalized Orlicz-Morrey spaces

In this section, we consider the commutators generalized by the singular integral operator, Marcinkiewicz operator and $B M O\left(R^{n}\right)$ function. A local integrable function $f \in L^{l o c}\left(R^{n}\right)$, if it satisfies

$$
\|b\|_{*} \equiv \sup _{x \in R^{n}, r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}\left|b(y)-b_{B(x, r)}\right| d y<\infty
$$

where $B(x, r)$ is ball centered at x and radius of r and $b_{B(x, r)}=\frac{1}{|B(x, r)|} \int_{B(x, r)} b(y) d y$, then b belongs to $B M O\left(R^{n}\right)$, and $\|\cdot\|_{*}$ is the norm in $B M O\left(R^{n}\right)$. The following estimate is very convenient in applications.
Lemma 3.1. [16] Let $b \in B M O\left(R^{n}\right)$. Suppose $1 \leq p<\infty, x \in R^{n}$ and $R>2 r>0$, there exist constant $C>0$, such that

$$
\left|b_{B(x, R)}-b_{B(x, r)}\right| \leq C \ln \frac{R}{r}\|b\|_{*}
$$

Before proving our theorems, we need the following lemma.
Lemma 3.2. [10] Let $b \in B M O\left(R^{n}\right)$ and Φ be a Young function with $\Phi \in \Delta_{2}$, then

$$
\|b\|_{*} \approx \sup _{x \in R^{n}, r>0} \Phi^{-1}\left(|B(x, r)|^{-1}\right)\left\|b(\cdot)-b_{B(x, r)}\right\|_{L^{\oplus}(B(x, r))} .
$$

We will use the following statements on the boundedness of the weighted Hardy operator

$$
\mathrm{H}_{w}^{*} g(r):=\int_{r}^{\infty}\left(1+\ln \frac{s}{t}\right) g(s) w(s) d s, \quad r \in(0, \infty)
$$

where w is a weight.
The following theorem is valid.
Theorem 3.1. Let v_{1}, v_{2} and w be weights on $(0, \infty)$ and $v_{1}(t)$ be bounded outside a neighborhood of the origin. The inequality

$$
\begin{equation*}
\sup _{r>0} v_{2}(r) \mathrm{H}_{w}^{*} g(r) \leq C \sup _{r>0}(r) g(r) \tag{9}
\end{equation*}
$$

holds for some $C>0$ for all non-negative and non-decreasing g on $(0, \infty)$ if and only if

$$
B:=\sup _{r>0} v_{2}(r) \int_{r}^{\infty}\left(1+\ln \frac{s}{t}\right) \frac{w(t) d t}{\sup v_{1}(s)}<\infty
$$

Moreover, the value $C=B$ is the best constant for (3.1).
Note that, Lemma 3.2 is proved analogously to [[8], Theorem 3.1].
The following result concerning the boundedness of commutators of Marcinkiewicz integral operator $\left[b, \mu_{\Omega}\right]$ on L^{p} is known.
Theorem 3.2. [27] Suppose that $1<p, q<\infty, \quad b \in B M O\left(R^{n}\right)$ and $\Omega \in L^{q}\left(S^{n-1}\right)$. Then, there is a constant C independent of f such that

$$
\left\|\left[b, \mu_{\Omega}\right](f)\right\|_{L^{p}\left(R^{n}\right)} \leq C\|f\|_{L^{p}\left(R^{n}\right)}
$$

As a consequence of Lemma 2.1 and Theorem 3.2, we get the following result.
Corollary 3.1. Let Φ be a Young function, $b \in B M O\left(R^{n}\right)$ and $\Omega \in L^{\infty}\left(S^{n-1}\right)$. If $\Phi \in \Delta_{2} \cap \nabla_{2}$, then $\left[b, \mu_{\Omega}\right]$ is bounded on $L^{\Phi}\left(R^{n}\right)$.

Therefore, we get the following theorem
Theorem 3.3. Let $\Omega \in L^{\infty}\left(S^{n-1}\right), b \in B M O\left(R^{n}\right), \Phi$ any Young function, φ_{1}, φ_{2} and Φ satisfy the condition

$$
\int_{r}^{\infty}\left(1+\ln \frac{t}{r}\right)\left(\operatorname{essinf} \frac{\varphi_{1}(x, s)}{\Phi^{-1}\left(|B(x, s)|^{-1}\right)}\right) \Phi^{-1}\left(|B(x, s)|^{-1}\right) \frac{d t}{t} \leq C \varphi_{2}(x, r)
$$

where C does not depend on x and r. If Φ satisfy the condition $\Phi \in \Delta_{2} \cap \nabla_{2}$, then the operator $\left[b, \mu_{\Omega}\right]$ is bounded from $M^{\Phi, \varphi_{1}}\left(R^{n}\right)$ to $M^{\Phi, \varphi_{2}}\left(R^{n}\right)$. Proof. For any ball $B=B\left(x_{0}, r\right)$, function $f(x)$ can be divided into two parts: $f=f \chi_{2 B}+f \chi_{R^{n} \mid 2 B}:=f_{1}+f_{2}$, thus, we have

$$
\left\|\left[b, \mu_{\Omega}\right] f\right\|_{L^{\oplus}(B)} \leq\left\|\left[b, \mu_{\Omega}\right] f_{1}\right\|_{L^{\oplus}(B)}+\left\|\left[b, \mu_{\Omega}\right] f_{2}\right\|_{L^{\oplus}(B)} \equiv J_{1}+J_{2}
$$

For J_{1}, by $L^{\Phi}\left(R^{n}\right)$ boundedness of $\left[b, \mu_{\Omega}\right]$ (see Corollary 3.1), from (6) we have

$$
J_{1} \leq C\left\|f_{1}\right\|_{L^{\Phi}\left(R^{n}\right)}=\|f\|_{L^{\Phi}(2 B)} \leq C \frac{1}{\Phi^{-1}\left(|B|^{-1}\right)} \int_{2 r}^{\infty}\|f\|_{L^{\Phi}\left(B\left(x_{0}, t\right)\right)} \Phi^{-1}\left(\left|B\left(x_{0}, t\right)\right|^{-1}\right) \frac{d t}{t}
$$

For J_{2}, observe that for any $x \in B$, since $y \in R^{n} \backslash 2 B$, it has the following inequality: $\frac{1}{2}\left|x_{0}-y\right| \leq|x-y| \leq \frac{3}{2}\left|x_{0}-y\right|$, therefore we obtain

$$
\begin{aligned}
\left|\left[b, \mu_{\Omega}\right] f_{2}(x)\right| & \leq C \int_{R^{n} \backslash 2 B} \frac{|\Omega(x-y)|}{|x-y|^{n-1}}|b(x)-b(y)||f(y)|\left(\int_{|x-y|}^{\infty} \frac{d t}{t^{3}}\right)^{\frac{1}{2}} d y \\
& \leq C \int_{R^{n} \backslash 2 B} \frac{|\Omega(x-y)|}{|x-y|^{n}}|b(x)-b(y)||f(y)| d y \\
& \leq C\|\Omega\|_{L^{\infty}\left(s^{n-1}\right)} \int_{R^{n} \backslash 2 B} \frac{|b(x)-b(y)|}{\left|x_{0}-y\right|^{n}}|f(y)| d y
\end{aligned}
$$

Then

$$
\begin{gathered}
\left\|\left[b, \mu_{\Omega}\right] f_{2}\right\|_{L^{\Phi}(B)} \leq C\left\|\int_{R^{n} \backslash 2 B} \frac{|b(y)-b(\cdot)|}{\left|x_{0}-y\right|^{n}}|f(y)| d y\right\|_{L^{\Phi}(B)} \\
\leq C\left\|\int_{R^{n} \backslash 2 B} \frac{\left|b(y)-b_{B}\right|}{\left|x_{0}-y\right|^{n}}|f(y)| d y\right\|_{L^{\Phi}(B)}+\left\|\int_{R^{n} \backslash 2 B} \frac{\left|b(\cdot)-b_{B}\right|}{\left|x_{0}-y\right|^{n}}|f(y)| d y\right\|_{L^{\Phi}(B)} \\
=J_{21}+J_{22} .
\end{gathered}
$$

For J_{1} we have

$$
\begin{aligned}
& J_{21} \approx \frac{1}{\Phi^{-1}\left(|B|^{-1}\right.} \int_{R^{n} \backslash 2 B} \frac{\left|b(y)-b_{B}\right|}{\left|x_{0}-y\right|^{n}}|f(y)| d y \\
\approx & \left.\frac{1}{\Phi^{-1}\left(|B|^{-1}\right)_{R^{n} \backslash 2 B}} \int_{\left|y(y)-b_{B}\right||f(y)| \int_{\left|x_{0}-y\right|}^{\infty} \frac{d t}{t^{n+1}} d y} \right\rvert\, b\left(\frac{1}{\Phi^{-1}\left(|B|^{-1}\right)} \int_{2 r 2 r \leq\left|x_{0}-y\right|<t}^{\infty} \int\left|b(y)-b_{B}\right||f(y)| d y \frac{d t}{t^{n+1}}\right. \\
= & \frac{1}{\Phi^{-1}\left(|B|^{-1}\right)} \int_{2 r} \int_{B\left(x_{0}, t\right)}\left|b(y)-b_{B}\right||f(y)| d y \frac{d t}{t^{n+1}} .
\end{aligned}
$$

Hence

$$
\begin{gathered}
J_{21} \leq C \frac{1}{\Phi^{-1}\left(|B|^{-1}\right)} \int_{2 r}^{\infty} \int_{B\left(x_{0}, t\right)}\left|b(y)-b_{B\left(x_{0}, t\right)}\right||f(y)| d y \frac{d t}{t^{n+1}} \\
\quad=\frac{1}{\Phi^{-1}\left(|B|^{-1}\right)} \int_{2 r}^{\infty}\left|b_{B\left(x_{0}, r\right)}-b_{B\left(x_{0}, t\right)}\right|_{B\left(x_{0}, t\right)}|f(y)| d y \frac{d t}{t^{n+1}}
\end{gathered}
$$

Applying Holder's inequality, by (5) and Lemmas 2.2, 3.1 and 3.2 we get

$$
\begin{aligned}
J_{21} & \leq C \frac{1}{\Phi^{-1}\left(|B|^{-1}\right.} \int_{2 r}^{\infty}\left\|b(\cdot)-b_{B\left(x_{0}, t\right)}\right\|_{L^{\tilde{\top}}\left(B\left(x_{0}, t\right)\right)}\|f\|_{L^{\Phi}\left(B\left(x_{0}, t\right)\right)} \frac{d t}{t^{n+1}} \\
& \left.+\frac{1}{\Phi^{-1}\left(|B|^{-1}\right)_{2 r}} \int_{2 r}^{\infty}\left|b_{B\left(x_{0}, r\right)}-b_{B\left(x_{0}, t\right)}\right|\|f\|_{L^{\Phi}\left(B\left(x_{0}, t\right)\right)} \Phi^{-1}\left(\mid B\left(x_{0}, t\right)\right)^{-1}\right) \frac{d t}{t} \\
& \leq C \frac{\|b\|_{*}}{\Phi^{-1}\left(|B|^{-1}\right)} \int_{2 r}^{\infty}\left(1+\ln \frac{s}{t}\right)\|f\|_{L^{\Phi}\left(B\left(x_{0}, t\right)\right)} \Phi^{-1}\left(\left|B\left(x_{0}, t\right)\right|^{-1}\right) \frac{d t}{t}
\end{aligned}
$$

For J_{22} we obtain

$$
J_{22} \approx\left\|b(\cdot)-b_{B}\right\|_{L^{\Phi}(B)} \int_{R^{n} \backslash 2 B} \frac{|f(y)|}{\left|x_{0}-y\right|^{n}} d y
$$

By Lemma 3.2 and the inequality (7), we get

$$
\begin{gathered}
J_{22} \leq C \frac{\|b\|_{*}}{\Phi^{-1}\left(|B|^{-1}\right)_{R^{n} \backslash 2 B}} \int_{|f(y)|}^{\left|x_{0}-y\right|^{n}} d y \\
\leq C \frac{\|b\|_{*}}{\Phi^{-1}\left(|B|^{-1}\right)_{2 r}} \int_{2 r}^{\infty}\|f\|_{L^{\oplus}\left(B\left(x_{0}, t\right)\right)} \Phi^{-1}\left(\left|B\left(x_{0}, t\right)\right|^{-1}\right) \frac{d t}{t} .
\end{gathered}
$$

Combining the estimates for J_{21} and J_{22} we have

$$
\begin{equation*}
\left\|\left[b, \mu_{\Omega}\right] f_{2}\right\|_{L^{\Phi}(B)} \leq C \frac{\|b\|_{*}}{\Phi^{-1}\left(|B|^{-1}\right)_{2 r}} \int_{2 r}^{\infty}\left(1+\ln \frac{s}{t}\right)\|f\|_{L^{\Phi}\left(B\left(x_{0}, t\right)\right)} \Phi^{-1}\left(\left|B\left(x_{0}, t\right)\right|^{-1}\right) \frac{d t}{t} \tag{10}
\end{equation*}
$$

Again combining the estimates for $\left[b, \mu_{\Omega}\right] f_{1}$ and $\left[b, \mu_{\Omega}\right] f_{2}$ we have

$$
\left\|\left[b, \mu_{\Omega}\right] f\right\|_{L^{\Phi}(B)} \leq C \frac{\|b\|_{*}}{\Phi^{-1}\left(|B|^{-1}\right)_{2 r}^{\infty}}\left(1+\ln \frac{s}{t}\right)\|f\|_{L^{\Phi}\left(B\left(x_{0}, t\right)\right)} \Phi^{-1}\left(\mid B\left(x_{0}, t\right)^{-1}\right) \frac{d t}{t}
$$

By inequality (10) and Theorem 2.2 we have

$$
\begin{aligned}
& \left\|\left[b, \mu_{\Omega}\right](f)\right\|_{M^{\Phi, \varphi_{2}}\left(R^{n}\right)} \leq C \sup _{x_{0} \in R^{n}, r>0} \varphi_{2}\left(x_{0}, r\right)^{-1} \int_{r}^{\infty} \Phi^{-1}\left(\left|B\left(x_{0}, t\right)\right|^{-1}\right)\|f\|_{L^{\Phi}\left(B\left(x_{0}, t\right)\right)} \frac{d t}{t} \\
& \quad \leq C \sup _{x_{0} \in R^{n}, r>0} \varphi_{1}\left(x_{0}, r\right)^{-1} \Phi^{-1}\left(\left|B\left(x_{0}, t\right)\right|^{-1}\right)\|f\|_{L^{\Phi}\left(B\left(x_{0}, t\right)\right)}=\|f\|_{M^{\Phi, \varphi_{1}}\left(R^{n}\right)} .
\end{aligned}
$$

Corollary 3.2. Let $\Omega \in L^{\infty}\left(S^{n-1}\right), b \in B M O\left(R^{n}\right), \Phi$ any Young function, $\varphi_{1} \in G_{\Phi}$ and $\left(\varphi_{1}, \varphi_{2}\right)$ satisfy the condition

$$
\int_{r}^{\infty}\left(1+\ln \frac{t}{r}\right) \varphi_{1}(x, t) \frac{d t}{t} \leq C \varphi_{2}(x, r)
$$

where C does not depend on x and r. If Φ satisfy the condition $\Phi \in \Delta_{2} \cap \nabla_{2}$, then the operator $\left[b, \mu_{\Omega}\right]$ is bounded from $M^{\Phi, \varphi_{1}}\left(R^{n}\right)$ to $M^{\Phi, \varphi_{2}}\left(R^{n}\right)$.

Acknowledgements. The author would like to express his gratitude to the referees for his (her) very valuable comments and suggestions.

References

1. Adams D.R., A note on Riesz potentials, Duke Math. Vol.42, (1975), pp. 765-778.
2. Chiarenza F., Frasca M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Math. Vol.7, (1987), pp. 273-279.
3. Benedek A., Calderon A.P., R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. Vol.48, (1965), pp. 356-365.
4. Deringoz F., Guliyev V.S., Samko S., Boundedness of maximal and singular operators on generalized Orlicz-Morrey spaces, Operator Theory, Operator Algebras and Applications, Series: Operator Theory: Advances and Applications, Vol.242, (2014), pp.139-158.
5. Ding Y., Lu S., Yabuta K., On commutators of Marcinkiewicz integrals with rough kernel, J. Math. Anal. Appl., Vol.275, (2002), pp.60-68.
6. Gala S., Sawano Y., Tanaka H., A remark on two generalized OrliczMorrey spaces, J. Approx. Theory, Vol.198, (2015), pp.1-9.
7. Guliyev V.S., Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl. Art. ID 503948, (2009), 20 p.
8. Guliyev V.S., Generalized local Morrey spaces and fractional integral opera-tors with rough kernel, J. Math. Sci. (N. Y.) Vol.193, No.2, (2013), pp.211-227.
9. Guliyev V.S., Softova L., Global regularity in generalized Morrey spaces of solutions to nondivergence elliptic equations with VMO coefficients, Potential Anal. Vol.38, No.4, (2013), pp.843-862.
10. Guliyev V.S., Deringoz F., On the Riesz potential and its commutators on generalized Orlicz-Morrey spaces, J. Funct. Spaces. Article ID 617414, (2014), 11 p.
11. Guliyev V.S., Deringoz F., Boundedness of fractional maximal operator and its commutators on generalized Orlicz-Morrey spaces, Complex Anal. Oper. Theory, Vol.9, No.6, (2015), pp.1249-1267.
12. Guliyev V.S., Softova L., Generalized Morrey estimates for the gradient of divergence form parabolic operators with discontinuous coefficients, J. Differential Equations, Vol.959, (2015), pp.2368-2387.
13. Guliyev V.S., Hasanov S.G., Sawano Y., Noi T., Non-smooth atomic decompositions for generalized Orlicz-Morrey spaces of the third kind, Acta Applicandae Mathematicae, Vol.145, No.1, (2016), pp.133-174.
14. Fu X., Yang D., Yuan W., Boundedness of multilinear commutators of Calder'on-Zygmund operators on Orlicz spaces over non-homogeneous spaces, Taiwanese J. Math., Vol.16, (2002), pp.2203-2238.
15. Eroglu A., Boundedness of fractional oscillatory integral operators and their commutators on generalized Morrey spaces, Boundary Value Problems, (2013).
16. Janson S., Mean oscillation and commutators of singular integral operators, Ark. Mat. Vol.16, (1978), pp.263-270.
17. Mizuhara T., Boundedness of some classical operators on generalized Morrey spaces, Harmonic Analysis, ICM 90 Statellite Proceedings, Springer, Tokyo, (1991), pp.183-189.
18. Morrey C.B., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., Vol.43, (1938), pp.126-166.
19. Nakai E., Hardy-Littlewood maximal operator, singular integral operators, and the Riesz potential on generalized Morrey spaces, Math. Nachr., Vol.166, 1994, pp.95-103.
20. Nakai E., Generalized fractional integrals on Orlicz-Morrey spaces, In: Banach and Function Spaces. (Kitakyushu, 2003), Yokohama Publishers, Yokohama, (2004), pp.323-333.
21. Nakai E., Orlicz-Morrey spaces and Hardy-Littlewood maximal function, Studia Math., Vol.188, (2008), pp.193-221.
22. Nakai E., Orlicz-Morrey spaces and their preduals, in: Banach and Function spaces (Kitakyushu, 2009) Yokohama Publ. Yokohama, (2011), pp.187-205.
23. Peetre J., On the theory of Mp, λ, J. Funct. Anal., Vol.4, 1969, pp.71-87.
24. Rao M.M., Ren Z.D., Theory of Orlicz Spaces, M. Dekker, Inc., New York, (1991).
25. Sawano Y., Sugano S., Tanaka H., Orlicz-Morrey spaces and fractional operators, Potential Anal. Vol.36, No.4, (2012), pp.517-556.
26. Torchinsky A., Wang S., A note on the Marcinkiewicz integral, Colloq. Math., Vol.60/61, (1990), pp.235-243.
27. Shi X., Jiang Y., Weighted boundedness of parametric Marcinkiewicz integral and higher order commutator, Anal. Theory Appl., Vol.25, No.1, (2009), pp.25-39.
